

Custodia Security

Size v1.8 Review
Conducted By: Ali Kalout, Ali Shehab

Contents

1. Disclaimer 3
2. Introduction 3
3. About Size 3
4. Risk Classification 4

4.1. Impact 4
4.2. Likelihood 4
4.3. Action required for severity levels 5

5. Security Assessment Summary 5
6. Executive Summary 5
7. Findings 7

7.1. Medium Findings 7
[M-01] getCollectionMarkets assumes Base-specific markets exist — script will always
revert on Ethereum 7
[M-02] Inconsistent APR source between validation and execution in
LiquidateWithReplacement 8
[M-03] reinitialize relies on HTTP-fetched user state but cannot be safely paused —
leads to potential migration inconsistencies 9

7.2. Low Findings 10
[L-01] totalSupply can be inflated if shares are sent directly to the vault 10
[L-02] callMarket does not support payable calls, preventing ETH deposits into markets
via factory 11

1. Disclaimer
A smart contract security review cannot ensure the absolute absence of
vulnerabilities. This process is limited by time, resources, and expertise and
aims to identify as many vulnerabilities as possible. We cannot guarantee
complete security after the review, nor can we assure that the review will
detect every issue in your smart contracts. We strongly recommend
follow-up security reviews, bug bounty programs, and on-chain monitoring.

2. Introduction

Custodia conducted a security assessment of Size’s smart contract
following the implementation of v1.8, ensuring its proper implementation.

3. About Size

Size is a lending marketplace with unified liquidity across maturities.

Size is built on an order book model where offers are expressed as yield
curves, allowing efficient and continuous pricing of fixed-rate products while
maintaining unified liquidity.

4. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

4.1. Impact

● High: Results in a substantial loss of assets within the protocol or
significantly impacts a group of users.

● Medium: Causes a minor loss of funds (such as value leakage) or
affects a core functionality of the protocol.

● Low: Leads to any unexpected behavior in some of the protocol's
functionalities, but is not critical.

4.2. Likelihood

● High: The attack path is feasible with reasonable assumptions that
replicate on-chain conditions, and the cost of the attack is relatively
low compared to the potential funds that can be stolen or lost.

● Medium: The attack vector is conditionally incentivized but still
relatively likely.

● Low: The attack requires too many or highly unlikely assumptions, or
it demands a significant stake by the attacker with little or no
incentive.

4.3. Action required for severity levels

● Critical: Must fix as soon as possible
● High: Must fix
● Medium: Should fix
● Low: Could fix

5. Security Assessment Summary

Duration: 26/05/2025 - 29/05/2025
Repository: SizeCredit/size-solidity
Commit: daf1d1d8db21ae7c62df35fcef4f99ed0a914f69

● src/*
● script/*

6. Executive Summary

Throughout the security review, Ali Kalout and Ali Shehab engaged with
Size’s team to review Size. During this review, 4 issues were uncovered.

Findings Count

Severity Amount

Critical N/A

High N/A

Medium 3

Low 2

Total Finding 5

Summary of Findings

ID Title Severity Status

M-01 getCollectionMarkets assumes Base-specific
markets exist — script will always revert on Ethereum

Medium Resolved

M-02 Inconsistent APR source between validation and
execution in LiquidateWithReplacement

Medium Resolved

M-03 reinitialize relies on HTTP-fetched user state
but cannot be safely paused — leads to potential
migration inconsistencies

Medium Resolved

L-01 totalSupply can be inflated if shares are sent
directly to the vault

Low Acknowledged

L-02 callMarket does not support payable calls,
preventing ETH deposits into markets via factory

Low Acknowledged

7. Findings

7.1. Medium Findings

[M-01] getCollectionMarkets assumes Base-specific
markets exist — script will always revert on Ethereum

Severity:
Medium

Description:
The protocol is deployed only on Base and Ethereum mainnet, but the logic in
getCollectionMarkets() implicitly assumes it's always running on Base by
enforcing that exactly four collection markets exist with hardcoded collateral symbols:
require(j == 4, "Invalid number of collection markets");
This function filters markets based on whether their
underlyingCollateralToken.symbol() matches one of:

● WETH
● cbBTC
● cbETH
● wstETH

However, these markets are part of the only collection that currently exists — and only
on Base. The Ethereum deployment does not have any collection markets, meaning
that j will always be 0, and the script will always revert with:
Invalid number of collection markets

Recommendations:
Modify getCollectionMarkets() to conditionally apply the require(j == 4)
check only when running on Base. For Ethereum, bypass the check and allow an empty
or partial result.

[M-02] Inconsistent APR source between validation and
execution in LiquidateWithReplacement

Severity:
Medium

Description:
In validateLiquidateWithReplacement, the borrow APR is fetched using
getUserDefinedBorrowOfferAPR, which reads from the user's own curve and
ignores the collection curve.
state.getUserDefinedBorrowOfferAPR(params.borrower, tenor);

However, in executeLiquidateWithReplacement, the borrow APR is calculated
using getBorrowOfferRatePerTenor, which uses the collectionId and
rateProvider, potentially returning a completely different value.

This mismatch creates a risk where a borrower passes validation using a favorable
user-defined curve but ends up being charged a higher rate from the collection curve
during execution. This breaks the expectation that validation guarantees the behavior of
execution, and can lead to failed transactions or mispriced loans.

Recommendations:
Replace getUserDefinedBorrowOfferAPR with getBorrowOfferAPR in the
validation function. This aligns validation with execution and ensures the same rate
computation logic is used throughout.

[M-03] reinitialize relies on HTTP-fetched user state but
cannot be safely paused — leads to potential migration
inconsistencies

Severity:
Medium

Description:
The reinitialize function in SizeFactory performs a one-time setup that migrates
a fixed set of users into a new collection. These users are fetched off-chain via an HTTP
call and passed into the contract via a proposal submitted to a Safe.

This creates a critical timing assumption: the user list must remain unchanged between
the moment it is fetched and when the upgrade is executed. However, due to the
asynchronous nature of Safe workflows, users may join the collection in between —
leading to inconsistencies and missed migrations.

Pausing the protocol to prevent further user changes would be a natural mitigation, but
it is not possible here because the reinitialize function internally calls
buyCreditLimitOnBehalfOf and sellCreditLimitOnBehalfOf, which revert if
the protocol is paused.

As a result, the migration is exposed to a race condition: if a user joins after the HTTP
snapshot but before the transaction is executed, they will be silently excluded from the
new collection, with no way to recover them into the migration.

Recommendations:
Introduce an explicit mechanism to temporarily freeze collection enrollment without
pausing the entire protocol.

7.2. Low Findings

[L-01] totalSupply can be inflated if shares are sent directly
to the vault

Severity:
Low

Description:
The totalSupply function in AaveAdapter returns the
aToken.balanceOf(address(tokenVault)), which reflects the total underlying
held by the vault. However, this does not guarantee alignment with the sum of all user
balances tracked via sharesOf(...) in the vault.

Since sharesOf is manually managed, a user (or contract) could transfer additional
scaled aTokens to the vault address directly, inflating the totalSupply result without
updating individual balances.

This issue is also present in ERC4626Adapter.

Recommendations:

Keep track of the sum(sharesOf) for the total supply, for more accurate accounting.

[L-02] callMarket does not support payable calls,
preventing ETH deposits into markets via factory

Severity:
Low

Description:
The callMarket function in SizeFactory was introduced to allow users to batch
interactions with multiple Size markets through the factory contract. It enables
composing multicalls such as subscribing to rate providers, borrowing across different
collaterals, or performing other protocol actions in a single transaction.

However, the current implementation of callMarket is not marked as payable.

This creates a silent limitation: users cannot call
market.deposit{value: ...}(...)
through the factory, even though the deposit function in the ISize implementation is
explicitly marked as payable. The lack of the payable modifier on callMarket
prevents any ETH from being forwarded to the market, causing such calls to revert.

Recommendations:

Mark callMarket as payable to allow forwarding ETH to the called market.

	
	
	Custodia Security
	Contents
	1. Disclaimer
	2. Introduction
	3. About Size
	4. Risk Classification
	4.1. Impact
	4.2. Likelihood
	4.3. Action required for severity levels

	5. Security Assessment Summary
	6. Executive Summary
	
	7. Findings
	7.1. Medium Findings
	[M-01] getCollectionMarkets assumes Base-specific markets exist — script will always revert on Ethereum
	
	[M-02] Inconsistent APR source between validation and execution in LiquidateWithReplacement
	[M-03] reinitialize relies on HTTP-fetched user state but cannot be safely paused — leads to potential migration inconsistencies

	7.2. Low Findings
	[L-01] totalSupply can be inflated if shares are sent directly to the vault
	[L-02] callMarket does not support payable calls, preventing ETH deposits into markets via factory

